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Qualitative agreement between the theoretically calculated parameters and pub- 
lished experimental data is Obtained for turbulent wall flow of a drag-reducing 
aqueous polymer solution treated as a viscoelastic medium. 

It is hypothesized in the majority of studies of the anomalous properties of aqueous 
polymer solutions that the reduction of frictional drag in flow over rigid boundaries (Toms 
effect) is attributable to the viscoelastic attributes of those solutions. The stated 
hypothesis requires the use of rheological relations other than the Newtonian equations in 
the derivation of the equations of motion for the indicated solutions. The problem is com- 
plicated, however, by the lack of theoretical principles justifying the choice of an appro- 
priate rheological relation for the description of the motion of drag-reducing polymer solu- 
tions. 

Adopting an ultimately simple model of a viscoelastic fluid as the model of the indi- 
cated solutions, we use the Maxwell and Oldroyd equations [I] as the "competing" rheological 
relations. They are written in the following form for the case of a plane-parallel fluid 
flow in the direction of the x axis in the half-space y > 0: 

a) Maxwell model: 

b) Oldroyd model: 
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A p p l y i n g  t he  Reyno lds  a v e r a g i n g  o p e r a t i o n  t o  a l l  t e rms  of  t h e  momentum e q u a t i o n  f o r  a 
continuum with regard for relations (i) or (2), we obtain the average equation of turbulent 
motion of a viscoelastic fluid past an infinite rigid wall. Integration of this equation 
across the flow yields a relation between the tangential stresses at the wall as well as the 
average and fluctuation velocity fields of the turbulent flow. 

For rectilinear motion in a circular tube of radius r the equation assumes the form 

O~u' pOl(v,)2 ~ ,~ Ou' ( Y ) ~ - pu'v' § ~0~v' 0~ ~ ~ - p0,(v ) D 7  = t0 1 -  T " (3 )  

I t  i s  e v i d e n t  f rom (3) t h a t  a l l o w a n c e  f o r  t h e  e l a s t i c  p r o p e r t i e s  o f  t h e  medium r e s u l t s  
in  a d d i t i o n a l  t u r b u l e n t  s t r e s s e s ,  t he  q u a n t i t a t i v e  e s t i m a t i o n  of  which  r e q u i r e s ,  as  f o r  t he  
R e ~ o l d s  s t r e s s e s  ( ~ u ' v ' ) ,  a d d i t i o n a l  r e l a t i o n s  be tween  t he  a v e r a g e  and f l u c t u a t i o n  v e l o c i t y  
f i e l d s .  A c c o r d i n g l y ,  we r e l y  on t he  most  commonly used  m i x i n g - p a t h  h y p o t h e s i s  in  semi -  
e m p i r i c a l  t u r b u l e n c e  t h e o r i e s ,  whereby 

u , ~ v , ~ l  0_~_ (4) 
0y 

The expression for the length ~ of the mixing path is fundamental to the remainder of 
the solution because not only the viscosity of the fluid, but also its elastic properties, 
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clearly have a significant effect on the variation of I across the flow. 

The Van Driest equation is most commonly used to describe the length of the mixing path 
[2] in the theory of turbulent wall flow of a Newtonian fluid. The velocity profile obtained 
near the wall by means of this equation is in good agreement with the experimental results 
both in the viscous substrate and logarithmic layer, as well as in the transition region be- 
tween them. The stated agreement is a consequence of the recognition of interaction between 
effects of a molecular and molar nature in the viscous substrate and transition region of the 

flow. 

We generalize the notions of Van Driest to the case of turbulent motion of a visco- 
elastic fluid. To do so we first solve the auxiliary problem of the velocity distribution 
in a viscoelastic fluid next to an infinite plane surface executing simple harmonic vibra- 
tional motion according to the law u = Uo cos ~t in its own plane. Due to flow symmetry, u= 
u(y, t), v = 0, and the equation of motion takes the form 

Ou Or (5)  
9 - 

Ot Og 

Using the more general rheological relation (2), we obtain from (5) 

Ou 02u 0 z 02u vO O~u - ~ - - - - - v  - -  O .  (6) 
Ot 2 20tOg ~ Ot Og 2 

For this equation we obtain a solution that reverts toUo cos wt at y = 0 and to zero at 
y = ~ in the form 

u = U o exp ( - -  Hg) cos (~ot - -  Gg), (7 )  

where 

f 

1 + "l ~2 2v 
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G = - -  , ~ 1 = 0 1 ~ ,  ~?2:0~~ 
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If we invert the dynamic problem such that the infinite plane wall is now at rest and 
the velocity u is treated as the fluctuation component of the turbulent flow velocity, we ob- 
tain for that component, neglecting the cosine factor, 

u'  = U; [1 7 exp ( - -  Hg)], (8 )  

where Uo', the velocity fluctuation in the logarithmic layer, is independent of the viscous 
and elastic properties, and is given by the following expression according to Prandtl: 

dg ' 

where k = 0.4. 

Assuming in (7) that the factor ~ is proportional to the dynamic velocity uT, we ob- 
tain the following equation for the mixing length: 

i k [1 oxpC ] 
in which n = YUT/V and A = 26 (Van Driest constant). This equation differs from the analo- 
gous Van Driest equation by the fact that the exponent includes the factor ~, which charac- 
terizes the elastic properties of the medium. It follows from (7) that 
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where 8i = ~oSi/v (i  = 1, 2). 

{ 213t / 
1-~-[ A" 

where 

Using the generalized equation (i0) for the mixing length, we obtain from (3) 

' a t! al~,,, ~, ~_ ~ (~,)2 + a3q/, ~, + a~ ((p,)3 _ a5 (~,)~ --  a6(p, + a6 R (z --I)=0, 
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a~ - ~0" z'Q ~, a~ = ~,kz~Q ~, 
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a 8=-~, Q=l--exp --~ , 
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(11) 

(12) 

and the prime denotes differentiation with respect to z. 

The minus sign is chosen for the terms v'~Zu'/~y z and u'v' on the basis of physical Con- 
siderations relating to the transfer of the Corresponding substation due to the convective 
action of the transverse velocity fluctuation v'. The term (v')Z3u'/3y, generally speaking, 
has a nonzero value, and its sign is not obvious. We therefore retain this term in the cal- 
culations and vary its sisn. Plus signs for the coefficient a2 and the second component of 
a, correspond to (v')2~u'/3~y < 0. 

Integrating Eq. (12) numericallyunder the boundary conditions ~(0)=0; ~'(0)=R;~'(1)=0 
for several pairs of values of 8, and B2 with variation of the sign of a2 and second compo- 
nent of a4, we show that the distribution of the average turbulent flow velocities next to the 
wall in a viscoelastic fluid differs appreciably from the analogous distribution in a New- 
tonian fluid. With an increase in the parameters of the viscoelastic characteristics under 
the condition 8~ >> 82 the thickness of the viscoelastic sublayer and width of the transi- 
tion region increase. As shown by calculations, however, this difference is primarily due 
to the influence of the viscoelastic properties on the mixing length. Taking the latter con- 
sideration into account, along with the uncertainty of the sign of the term (v')2~u'/3y, we 
solve the problem below for rectilinear motion in a circular tube in the "linear approxima- 
tion." 

We integrate the simplified equation 

Whence we obtain 

k'z~Q~R ((V)" + r + R (z - -  I) = o, (13) 

1 

f 2R(1 --z) (14) 
----. V 1 + 4k~R~Q2z 2(t + z) ~- 1 

0 

The viscoelastic properties of the medium are accounted for in Eq. (13) in accordance with 
the mixing-length equation (i0). The coefficient of viscous friction and the Reynolds number 
are given by the expressions 
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Fig. i. Coefficient of viscous friction versus Reynolds 
numbers and elasticity. I) El = E2 = 0 (Newtonian fluid), 
dashed curve according to the Nikuradze equation; 2-7) E2 = 
0 (Maxwell fluid); 2) El = 10-6; 3) 10-5; 4) i0-~; 5) 10-s; 
6) 5-10-s; 7) 5.10-2; 8) X = 64/Re (laminar flow); 9) El = 
5"10 -3 , E2 = 5"10-7; i0) El = 5.10 -3 , E2 = 5"10 -9 (01droyd 

fluid). 

~ = 8  , R e = 2 - - V  R, (15) 

in which 

l 

V =2 S ~(I --z)dz. 
0 

The calculations are carried out for constant values of the elastic coefficients Ei, which 
together with the Reynolds number are similarity criteria for the viscoelastic fluid and char- 
acterize the ratios of the relaxation (retardation) times 0 i and diffusion d2/~. The Weis- 
senberg number W and Reynolds number Re are related to the elasticity criterion E by the ex- 
pression 

W = E Re. (16) 

The parameters Bi appearing in the mixing-length equation are related to the elastic con- 
stants E i and Reynolds number Re by the expressions 

~i = 1 >~Ei Re~. (17)  
8 

The results of the calculations for the Maxwell and 01droyd models are given in Fig. io The 
results for the Maxwell model give better qualitative agreement with the published experi- 
mental data than those obtair~ed for the 01droyd model of a viscoelastic fluid. As the figure 
indicates, for 0~ >> 02 both models naturally yield consistent results over a reasonably 
broad range of Reynolds numbers. 

The results illustrated in the figure satisfactorily account for many effects observed 
experimentally. For example, the given theory predicts the existence of a threshold value of 
the Reynolds number for the initiation of the drag-reduction effect, where for a constant con- 
centration of the polymer solution the threshold Reynolds number increases with the diameter. 
Also, with an increase in the tube diameter, all other conditions being equal, the net drag 
reduction diminishes. 

However, the theory fails to predict the experimentally observed saturation of the drag- 
reduction effect and its diminution with increasing Reynolds number for the case of dilute 
polymer solutions. It is well known that large shear stresses are accompanied by degradation 
of the polymer macromolecules or their formation into supramolecular structures. It is ob- 
vious that the parameters 61 and 02 differ in the degraded solution from the corresponding 
rheological parameters of the polymer solution at subcritical shear stresses. 
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We note in conclusion that Gorodtsov and Leonov [3] have used an alternative semiempiri- 
cal theory of turbulent wall flow based on the model of a periodic viscous substrate to de- 
scribe the motion of a viscoelastic fluid; their results are qualitatively consistent with 
those obtained in the present study. 

NOTATION 

u,v, longitudinal and transverse velocity components; u',v', fluctuation velocity com- 
ponents; Z, mixing length; d, tube diameter; V, average (discharge) velocity in the tube; 
u z = ~To/p, dynamic velocity; ~, dynamic viscosity coefficient; v, kinematic viscosity coef- 
ficient; e:, relaxation time; ~2, retardation time; p, density; X, coefficient of viscous 
friction; ~, cyclic frequency; W = 0V/d, Weissenberg number; E = 0v/d 2, elastic constant; 
Re = Vd/v, Reynolds number; ppm, weight concentration of the solution in polymer parts per 
million parts water. 

1. 
2. 
3. 
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VISCOSITY OF BINARY LIQUID SYSTEMS 

G. N. Dul'nev, Yu. P. Zarichnyak, 
and B. G. Kapanadze 

UDC 532.13 

A method is proposed for calculating the viscosity of binary liquid systems 
(solutions, mixtures) involving the concentrations and properties of initial 
components on the basis of the theory of generalized conductivity. 

Formulation of the Problem 

A significant number of formulas for calculating the viscosity of binary liquid systems 
are known at present. These systems are obtained either by generalizing the experimental 
data (empirical formulas) or on the basis of the molecular theory of the liquid state. 

We note that empirical formulas that describe the isotherms of viscosity of some single 
systems do not completely satisfy the experimental data for other systems. At times, empiri- 
cal formulas satisfactorily describe only a part of the isotherm of a significant number of 
systems (in most cases, the area with the less viscous component), but these formulas do not 
agree with the experimental isotherm throughout its whole range [i]. Despite the inadequa- 
cies of empirical formulas, they do have a definite advantage because of their simplicity and 
reliability. To use formulas of the second group we must know the experimental values of the 
viscosity of a single mixture and, even better, of some of its compounds. In the latter case 
the accuracy of determining the viscosity according to these formulas significantly increases 

[2]. 

In calculating the coefficients of thermal conductivity and electric conductivity of bi- 
nary systems, we can successfully use methods of the theory of generalized conductivity that 
are applied to thestructure of a mixture with interpenetrating components. Below we show 
the possibility of extending this method to the calculation of the viscosity of binary liquid 

systems. 
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